DOOSAN GridTech

END-TO-END FLEXIBLE & SCALABLE ENERGY STORAGE SYSTEMS

01 DOOSAN GROUP OVERVIEW

DOOSAN GRIDTECH

Doosan Group

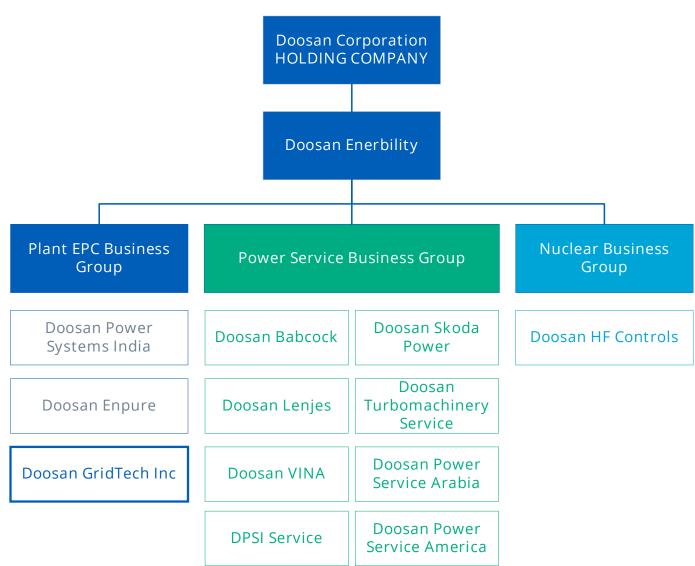
Oldest Company Incorporated in Korea

- One of top 10 conglomerates in Korea, active in engineering and manufacturing of power plants, construction equipment, industrial facilities, engines, construction
- Doosan is the oldest conglomerate in Korea with over 126 years of history but one of the fastest growing company, achieving 10% average annual growth in Sales over the last 17 years.
- Strong aspiration for accelerated globalscale growth, with focus on Infrastructure Support Businesses
 (ISP) reaching total sales of \$16.3 billion

(ISB) reaching total sales of \$16.3 billion in 2017

Doosan Corporation

- Electro-Materials
- Fuel Cell Power
- Digital Innovation
- Retail


Affiliates

- Doosan Enerbility
- New energy solutions
- Power plant equipment / Services 🜉
- Plant EPC / Construction
- Material manufacturing
- Doosan Bobcat
- Doosan Industrial Vehicle
- Doosan Fuel Cell
- Doosan Mecatec
- Doosan Robotics
- Doosan Mobility Innovation
- Doosan Logistics Solutions
- Oricom
- Hancomm
- Doosan Magazines
- Doosan Bears
- Doosan Cuvex

Doosan Enerbility

Core Business Organization

Extensive Global Operation

Doosan Enerbility has strategically organized global networks of engineering, manufacturing, and service to be a global leader in the power & water business.

02 ABOUT US

Doosan GridTech

Delivering sustainable power where and when it is required.

Our Vision

Our vision is to deliver flexible and scalable energy storage systems through the design of intelligent, award-winning software built on open standards for the delivery of renewable and sustainable power where and when it is required.

Our Mission

Our mission is to enable a safe, reliable, and sustainable low-carbon power grid to withstand the energy demands of the future. With environmental stewardship and economic growth at the forefront, our intelligent software and energy storage systems are bankable, scalable, and reliable. Our state-of-the-art end-to-end energy storage solutions are key to the longevity of energy distribution. We bring flexibility at all project execution levels from Design and Delivery, Control & Optimization Software, System Integration, and Operations and Maintenance.

Creating the **flexible**, **low-carbon**, **digital grid** of the future

DOOSAN GridTech

Put intelligence where its needed	Develop interoperable solutions	Provide end-to-end services	Optimize renewable energy integration	
Develop a multi-tiered software platform to make the right decisions at the right places on the grid	Embrace open standards and flexibility to lower customer costs and preserve their choice as they adopt distributed resources	Provide power systems expertise at all stages of the DER and renewable lifecycle, capturing the resource's full potential	Find ways to optimize the integration of renewable energy on the grid, lowering costs to deliver it and maximizing its consumption	

Executive Leadership Team

Our dedicated leadership team possesses a depth and breadth of knowledge and experiences that are unmatched in the battery storage and clean energy industry.

- Seasoned leadership team with decades of experience in the software and energy space
- Leadership experience at technology, energy, and industrial companies

David Jackson

Richard Janssen \Box

al Counsel

grid Lehnert

Sanderson ector, Bids & Proposals Christopher

Young

RO eD

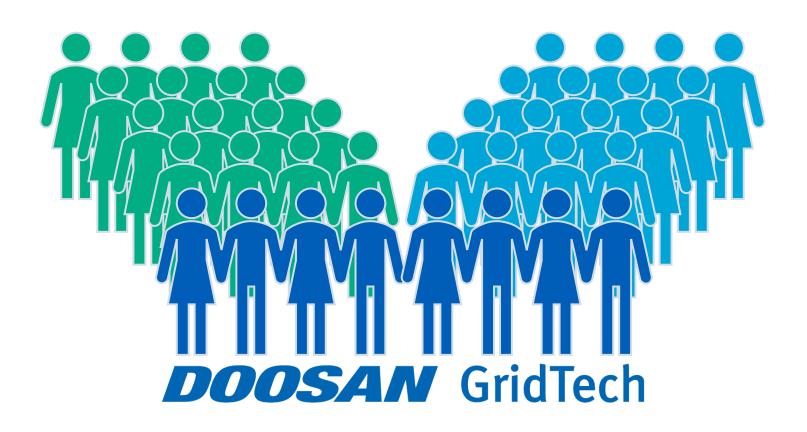
DOOSAN GRIDTECH

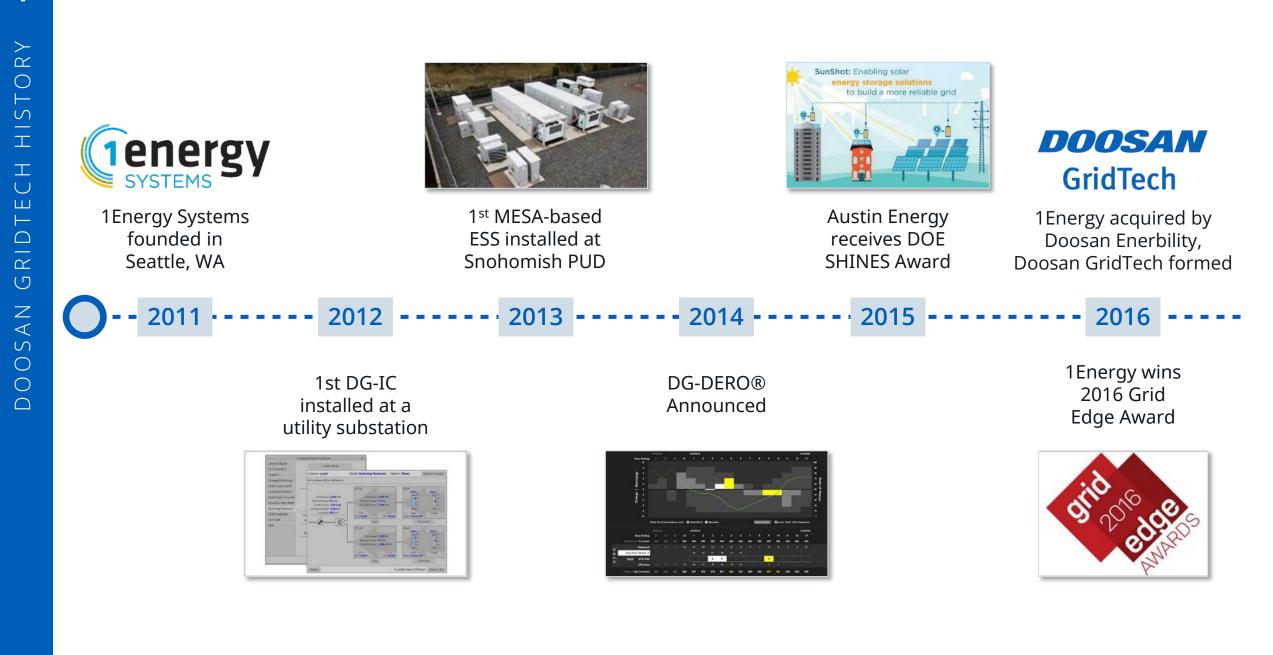
• 75 employees

Nonyoung Ahn

Kim D M

eve Hummel

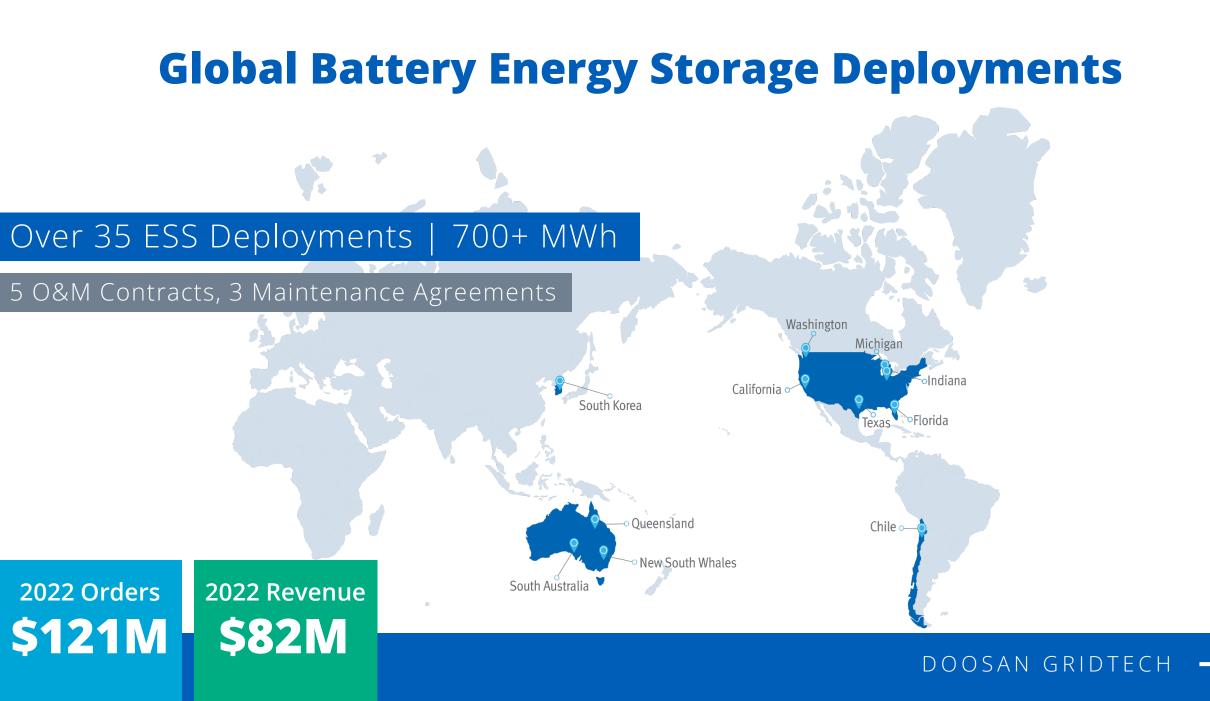



The Right Team


Software + Power Experience

Software Engineering

Power Systems Engineering



03 END-TO-END ENERGY STORAGE SOLUTIONS

Grid-Scale Energy Storage Solutions

Our Client Partnerships

Trusted to be BESS and EMS provider on series of first BESS's for early market progressive utilities.

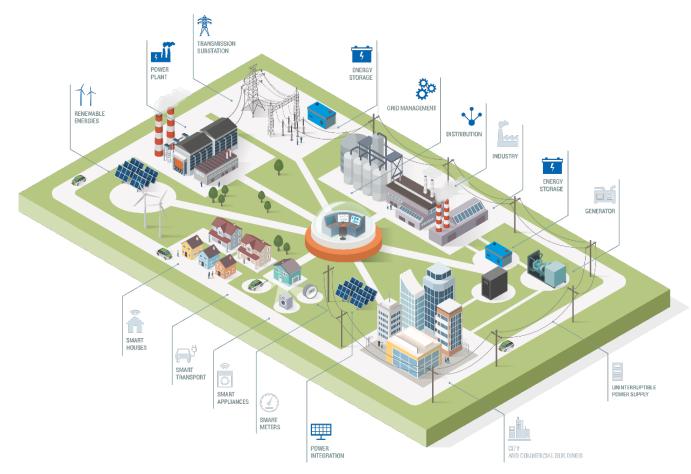
04 ENERGY MANAGEMENT I SYSTEM

Doosan GridTech's fully-optimized, market-leading control platform **places decision making intelligence where it is most effective**

Flexible, Autonomous, Scalable, Reliable, and Safe DG-IC® Intelligent Controller

PERFORMANCE ANALYZER

DG-DERO® Distributed Energy Resource Optimizer


Extensible artificial intelligence amplifies energy management performance for battery energy storage and hybrid power systems. Maintain the health and forecast performance of system

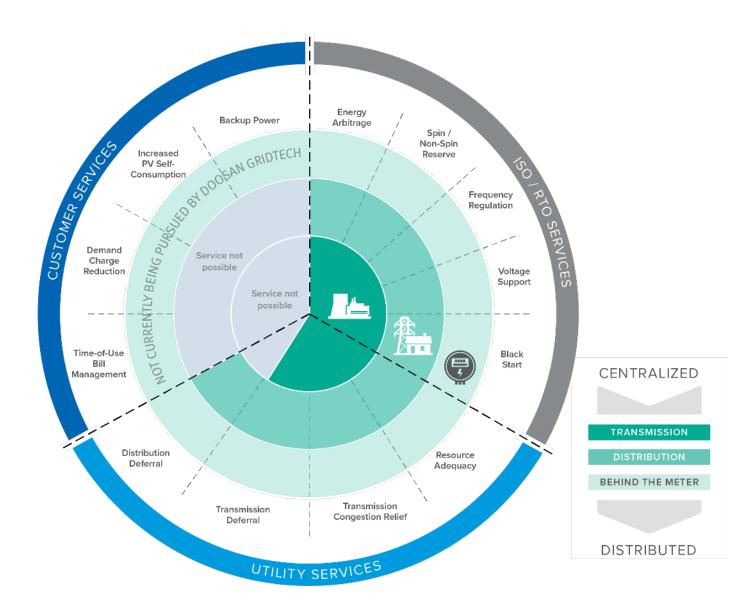
Works to maximize the value of Distributed Energy Resources through a flexible, modular, and configurable set of applications.

BESS Applications

We created this control platform to be able to serve any ESS use-case.

From bulk power system applications to remote community backup support and reliability to integrating renewable power on a circuit using multiple ESSs.

Intelligent Software


Distributed (Generation

Grid Energy Storage

Battery storage can provide up to 13 services to three stakeholder groups

Each value stream can be categorized as either an avoided cost/loss or as direct income.

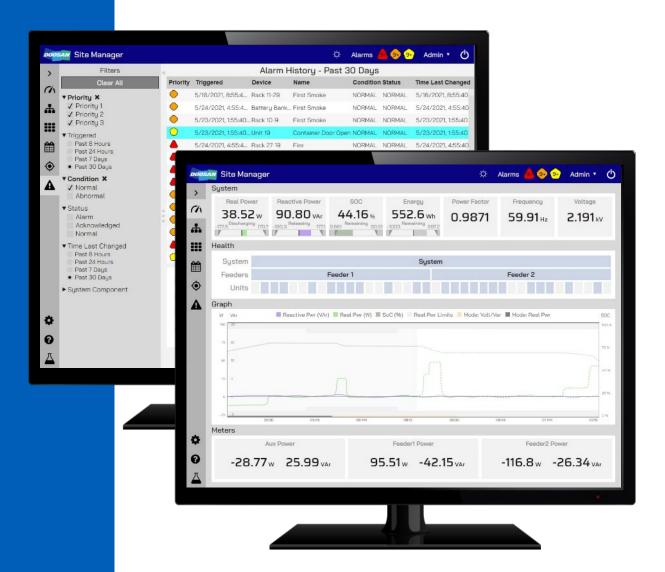
Doosan currently offers 9 out of 13 identified energy storage value streams with our Al-driven platform.

Value Creation Mechanism

*Not exhaustive, VCMs depend on customer objectives and specific environment.

Category		Application	Value Creation Mechanism (VCM)
Distribution Ops Support	1	Back-up Power (islanding)	Benefit reliability factors (SAIDI/SAIFI) and continue to sell energy during outages.
	2	Volt/VAR optimization	Improve voltage profile and defer investment in other voltage control equipment.
	3	Power Factor Correction	Reduce system losses by operating the distribution circuit closer to unity power factor.
Transmission Ops Support	4	Peak Loss Avoidance	Reduce technical losses on transmission by transmitting less energy across transmission during peak times (I²R losses)
	5	VAR support for transmission	Increase generation revenue by relieving generators of VAR loading.
Direct ISO Market Participation	6	Regulating reserve	Create revenue via participation in ISO regulating reserve market.
	7	Spinning Reserve	Create revenue via participation in ISO spinning reserve market.
	8	Supplemental Reserve	Create revenue via participation in ISO supplemental reserve market.
	9	Capacity	Create revenue via participation in ISO capacity market.
	10	Energy	Create revenue via participation in ISO energy market.
	11	Ramp product	Create revenue via participation in ISO ramp product market.
	12	Energy procurement cost reduction	Buy more energy from the market when prices are low; buy less energy from the market when prices are high.
Bulk System Benefits	13	Load forecast error mitigation	Compensate for differences between forecasted load bid and actual load, reducing exposure to real-time market and to load forecast error penalties.
	14	Generation offer error mitigation	Compensate for unforeseen deviations between generation offer and available generation, reducing load forecast error exposure.
	15	Black start	Participate in process to energize system after an outage.
	16	Primary frequency response	Respond to locally-measured deviations in frequency to contribute to NERC BAL-003 requirements.
Asset Deferral	17	Generation capacity deferral	Avoid the need for generation asset upgrades to meet future generation capacity needs.
	18	Transmission capacity deferral	Avoid the need for transmission asset upgrades by reliably shifting peak consumption to off-peak times.
	19	Distribution capacity deferral	Avoid the need for distribution asset upgrades by reliably shifting peak consumption to off-peak times.
Customer Revenue	20	Customer back-up power program revenue	Create revenue from customers for providing a battery that provides back-up power during an outage.
	21	Customer bill reduction program revenue	Create revenue from customers for providing a battery that enables customers to reduce their energy bill.

DG-IC® Doosan GridTech Intelligent Controller®


Extensible artificial intelligence energy management for battery energy storage and hybrid power systems. Fully flexible, precision programming delivers safe, reliable control, and optimization with rapid response to changing conditions in real-time. The DG-IC® provides the interface for communications between the devices in the system and remote operators and other data collection systems, such as SCADA.

Cost-effectively integrate renewable energy while maintaining high power quality and reliability

DG-IC®

Benefits at a Glance

DOOSAN GRIDTECH

Responds Quickly

Prioritized operating modes with sub-second response to variations in real or reactive power, voltage, and frequency mean a quick response to your most pressing needs.

Adapts Readily

Configurable parameters, constraints, and settings and a commitment to open standards-based communications ensure the systems can meet your specifications in AC and DC coupled applications.

Delivers Safely & Reliably

Built-in features - maintenance mode, three-tier alarm system, failsafe shutdown – ensures personnel, the grid, and the system are safe.

DOOSAN GRIDTECH

Operating Modes Align with Value Streams

DG-IC® covers multiple use cases

The DG-IC® provides opportunities to avoid costs and losses as well as opportunities for income.

ESS Real / Reactive Power	ESS Power Limit	ESS Power Factor
SOC Management	Power Following	Load Following
Generation Following	Power Factor Correction	Power Smoothing
Peak Power Limiting	Volt/VAr	Volt/Watt
Frequency/ Watt	AGC	Spinning Reserves
	Voltage Smoothing	

Optimizing Value

Optimizing value across the power and energy application spectrum for new systems and retrofits.

	APPLICATION	USE CASES	DG-IC OPERATING MODES
POWER	Voltage Regulation	Renewable Power IntegrationRemote community support	 Voltage Smoothing Dynamic Volt/VAr Dynamic Volt/Watt
	Frequency Regulation	Ancillary servicesContingency reserves	 Automatic Generation Control (AGC) Frequency/Watt Spinning Reserves
	Islanding	Outage ManagementNon-wires Alternatives	 SOC Management
	Solar + Storage	Power FirmingEnergy Shifting	Generation FollowingESS Real Power
	Peak Management	Demand Charge ManagementPeak Shaving	Demand Charge ManagementReal Power Response
ENERGY	Energy Arbitrage	Energy Market Participation	ESS Real Power

DOOSAN GRIDTEC

T

DG-PAN

Doosan GridTech Performance Analyzer™

- Using historical data and sophisticated models underscored by artificial intelligence, provides meaningful predictions to assist operational decision-making
- Allows automated reporting that sends customized reports to various stakeholders
- Allows system operators to create custom key performance indicators, benchmarks, and visualizations

Secure visibility into the current and expected status of assets in real-time

DG-DERO®

Distributed Energy Resource Optimizer®

A field-proven distributed energy resource management system, providing control, monitoring and optimization of distributed energy resources. Be it a single energy storage system or a fleet of thousands of devices, DG-DERO® works to maximize the value of DERs through a flexible, modular, and configurable set of applications.

Better management of the grid and less electricity wastage

DG-DERO®

Benefits at a Glance

DOOSAN GRIDTECI

Optimizes Value

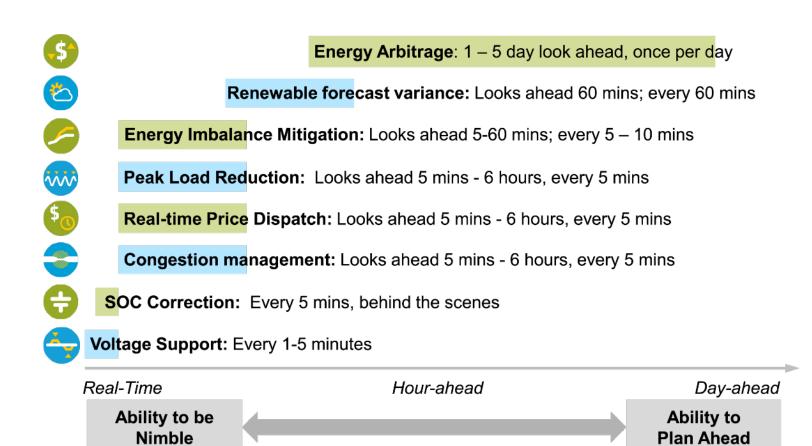
Multiple applications are optimized on intra-hour, hourly, or daily time horizons as conditions change.

Simplifies Fleet Management

Serves as a central hub for all DERs – no need for multiple custom portals as DERs proliferate.

Scales as the Fleet Grows

Modular, flexible architecture allows for scaling to 1,000's of devices.


Lowers Risk

Embrace of open-standards both lowers the cost and time for DER integration and preserves flexibility to add or swap components in the future.

Applications Focused on Value Creation

DG-DERO® applications cover multiple use cases

DG-DERO® has an ever-expanding suite of value creating applications. Applications are optimized according to the relevant time-horizons. Value creation is maximized with optimization occurring every five minutes in response to changing conditions. Applications can be configured to meet each customers' unique needs.

How We Cybersecure Your Investment

Our "Defense in Depth" Pledge

We will uphold these layers of protection — each working to contribute to the overall security of your digital assets Information integrity and access controls

Employee policy, practices, and procedures

Internal and perimeter network-level protections

Server and client-based logical and physical protections

Application logic, error checking, and data validation controls

05 KEY EPC EXPERIENCE

Wandoan South 100MW BESS – Standalone

Vena Energy

RIDTECH

J

OOSAN

Location: Western Downs Region – Australia Utility Offtaker: AGL Energy Battery: Samsung SDI (AC-coupled) Inverter: Power Electronics Control Software: DG-IC®

Purpose:

To play a major role in improving grid stability and support the state's shift to renewable energy. Part of Wandoan South Project, approved to generate 1GW of solar energy and 450MW of energy storage

Challenge:

Frequency and voltage support in under 100ms

First registration of ESS into the Australian "National Electricity Market"

Doosan Role:

Tailem Bend 2 41MW BESS – Hybrid

Vena Energy

Location: Tailem Bend, Australia Utility Offtaker: ElectraNet Battery: CATL Inverter: Power Electronics Control Software: DG-IC®

Open Standards for Energy Storage

Purpose:

To counter the intermittent nature of solar generation and maximize the solar plant's profit while providing ancillary services to the National Electricity Market.

Challenge:

Frequency and voltage support in 250ms

Doosan Role:

EPC Contractor, System Integrator & EMS Provider. O&M included.

Capital 100MW BESS – Standalone

Neoen

Location: Australian Capital Territory – Australia Utility Offtaker: Neoen Battery: CATL Inverter: Power Electronics Control Software: DG-IC®

Purpose:

Support and stabilize ACT's electricity grid by providing power to help avoid blackouts during periods of high demand and when large fossil fuel generators fail in heatwave conditions

Challenge:

Respond to frequency changes to prevent voltage and frequency collapse

Doosan Role:

EPC Contractor, System Integrator & EMS Provider. O&M included.

Chisholm Grid 100MW BESS – Standalone

Able Grid / Eolian

RIDTECH

J

OOSAN

 \cap

Location: Fort Worth, TX Utility Offtaker: 100% Merchant Battery: Samsung SDI Inverter: Sungrow Control Software: DG-IC®

Purpose:

Control, monitor, and dispatch BESS in ERCOT market services including fast frequency response, regulation services, reserve services, energy arbitrage, and voltage support service

Challenge:

Provide 150ms response time for fast frequency response (FFR)


Doosan Role:

System Integrator & EMS Provider

Beacon Solar Plant 20MW BESS – Co-located with Solar

Los Angeles Department of Water & Power

Location: Kern County, CA Utility Offtaker: LADWP Battery: Samsung SDI (AC-coupled) Inverter: SMA Control Software: DG-IC®

Purpose:

To allow greater use of solar and wind generation in the area as well as helping maintain grid reliability and lowering use of LADWP's natural gas generators

Challenge:

Deliver modular turnkey design to confront harsh desert conditions at an availability of over 99% for 10 years

Doosan Role:

EPC Contractor, System Integrator & EMS Provider. Maintenance agreement included.

Kingsbury 1.5MW BESS – Co-located with Solar

Austin Energy

TECH

RID

J

OOSAN

Location: Austin, TX Utility Offtaker: Austin Energy Battery: LG Chemical Inverter: Parker Control Software: DG-IC® and DG-DERO®

Purpose:

• Kingsbery ESS is co-located with the La Loma community solar array (2.6 MW). It will provide voltage support services on the local circuit and perform energy arbitrage within ERCOT market to maximize local use of solar production

Challenge:

 Integrate high levels of renewable energy on distribution level circuit

Doosan Role:

• System Integrator & EMS provider

MESA 1 & 2 BESS – Standalone

Snohomish County Public Utilities District

Location: Everett, WA Utility Offtaker: Snohomish County PUD Battery: Mitsubishi, LG Chemical, and UET Inverter: Parker and Siemens Control Software: DG-IC® and DG-DERO® Purpose:

 Two ESSs were deployed at the same substation and demonstrated the capability of the DG-IC® to manage more than one ESS at the substation. The third ESS is an energy dense vanadium redox flow battery, with another DG-IC® control system. All ESSs were deployed using the MESA standards, ensuring that SnoPUD has standardized communication interfaces, uniform scheduling capability, and reliable security parameters. Doosan GridTech's DG-DERO® is the keystone of SnoPUD's program.

Challenge:

 Holistically design, grid integrate and optimize a set of energy storage systems

Doosan Role:

• System Integrator & EMS provider

Atterbury 5MW BESS + 2MW PV - Hybrid

Duke Energy

Location: National Guard – Camp Atterbury, IN Utility Offtaker: Duke Energy Battery: Samsung SDI Inverter: SMA Control Software: DG-IC® Open Standards for Energy Storage

Purpose:

Improves customer reliability and ensures power supply to mission critical military operations, accesses the fast frequency regulation market, and integrates with distribution operations to provide grid support services as needed

Challenge:

Deliver microgrid for large National Guard base as a utility resiliency service

Doosan Role:

EPC Contractor, System Integrator & EMS Provider. O&M included.

Jennings 5.5MW BESS – Standalone

Duke Energy

GRIDTECH

DOOSAN

Location: Jennings, FL Utility Offtaker: Duke Energy Battery: Samsung SDI Inverter: SMA

Open Standards for Energy Storage

Purpose:

Improves customer reliability and ensures power supply to mission critical military operations, accesses the fast frequency regulation market, and integrates with distribution operations to provide grid support services as needed

Challenge:

Capture revenue from the MISO Frequency Regulation market to improve economics for investment.

Doosan Role:

EPC Contractor

Micanopy 8.25MW BESS – Standalone

Duke Energy

Location: Micanopy, FL Utility Offtaker: Duke Energy Battery: Samsung SDI Inverter: SMA

Open Standards for Energy Storage

Purpose:

Provides a cost-effective solution for focused power quality and reliability for the town of Micanopy and nearby neighbors.

Challenge:

Capture revenue from the MISO Frequency Regulation market to improve economics for investment.

Doosan Role:

EPC Contractor

John Hopkins 2.5MW BESS + 1MW PV – Standalone

A MESA

Duke Energy

Location: John Hopkins Middle School, St. Petersburg, FL Utility Offtaker: Duke Energy Battery: CATL Inverter: Dynapower

Purpose:

The microgrid consists of a 1-megawatt solar parking canopy array and a 2.5-megawatt battery and controls, which will store and deploy clean, renewable energy to the school and grid. The project enhances electric service and grid operations for customers.

Challenge:

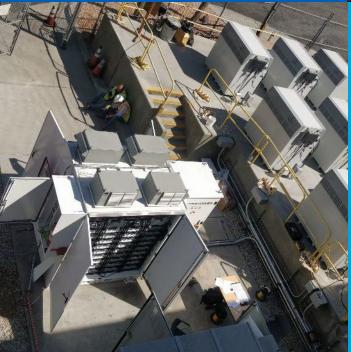
Support grid operations and provide backup electric power to the school when it must operate as a special need's hurricane evacuation shelter.

Doosan Role:

EPC Contractor

06 O&M SERVICE EXPERIENCE

10 yrs ①


Beacon BESS 10MW/20MWh

Maintenance and performance guarantees

10 yrs 🕔

JFB BESS .2MW/.8MWh

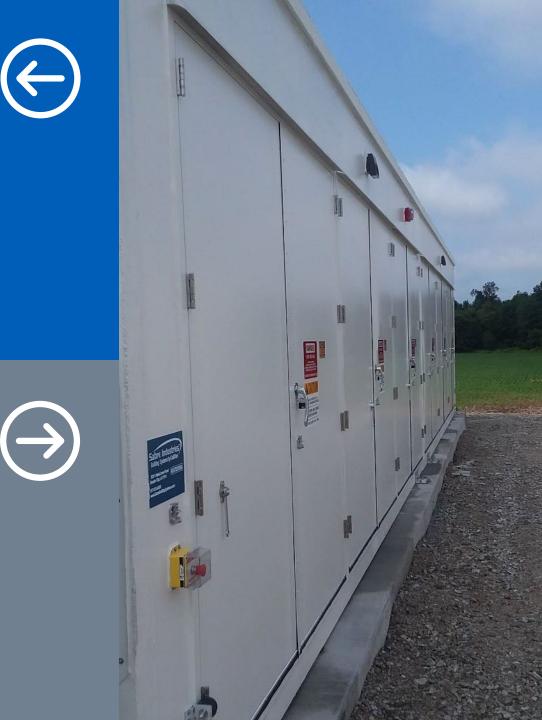
Maintenance and performance guarantees

25 yrs

Horn Rapids BESS 1MW/4MWh

Maintenance and performance guarantees

12 yrs 🔶


Atterbury BESS 5MW/5MWh

Operations & Maintenance

12 yrs

NABB BESS 5MW/5MWh

Operations & Maintenance

20 yrs

Capital BESS 100MW/200MWh

Operations & Maintenance

Tailem Bend 2 41MW/45MWh

Operations & Maintenance

Wandoan South 100MW/150MWh

Operations & Maintenance

DOOSAN GRIDTECH

THANK YOU